Publications by authors named "C X Gao"

Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.

View Article and Find Full Text PDF

Peatlands are significant global carbon sinks; however, their carbon storage functions are vulnerable to human activities. In the Greater Khingan Mountains of Northeast China, where forest and peatland ecosystems are interspersed extensively, prescribed burning is conducted annually on peatlands to prevent major forest fires. To investigate the effect of prescribed burning on carbon and nutrient cycling processes in peatlands, we conducted a three-year experiment in the Greater Khingan Mountains.

View Article and Find Full Text PDF

This article reviews plant-derived exosome-like nanoparticles (ELNs), and highlights their potential in regenerative medicine. Various extraction techniques, including ultracentrifugation and ultrafiltration, and their impact on ELN purity and yield were discussed. Characterization methods such as microscopy and particle analysis are found to play crucial roles in defining ELN properties.

View Article and Find Full Text PDF

Background: Many cancer cells exhibit aberrant metabolic reprogramming through abnormal mitochondrial respiration. Protein tyrosine phosphatase mitochondrial 1 (PTPMT1) is a protein tyrosine phosphatase localized to the mitochondria and linked to mitochondrial respiration. However, the expression and role of PTPMT1 in regulating the biological characteristics of small cell lung cancer (SCLC) has not yet been explored.

View Article and Find Full Text PDF

The fishery resources in the Yangtze River Estuary (YRE) have declined drastically because of overfishing and environmental changes, leading to ecosystem degradation of the YRE, and bringing numerous rare fish species to the brink of extinction. As a new technology with great prospects for popularization and application, environmental DNA (eDNA) technology has been utilized and proven by many studies to have high potential in revealing the various species' biodiversity. In this study, we analyzed the species composition and diversity of the Yangtze River Estuary using a combination of eDNA technology and bottom trawling approaches, and later, the comparison of both methods.

View Article and Find Full Text PDF