Publications by authors named "C Wilm"

Amplification of fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) has been considered as an actionable drug target. However, pan-FGFR tyrosine kinase inhibitors did not demonstrate convincing clinical efficacy in FGFR1-amplified NSCLC patients. This study aimed to characterise the molecular context of FGFR1 expression and to define biomarkers predictive of FGFR1 inhibitor response.

View Article and Find Full Text PDF

Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair.

View Article and Find Full Text PDF

Radiotherapy (RT) along with surgery is the mainstay of treatment in head and neck squamous cell carcinoma (HNSCC). Radioresistance represents a major source of treatment failure, underlining the urgent necessity to explore and implement effective radiosensitization strategies. The MET receptor widely participates in the acquisition and maintenance of an aggressive phenotype in HNSCC and modulates the DNA damage response following ionizing radiation (IR).

View Article and Find Full Text PDF

Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death globally, and new immunotherapies developed and under development targeting PD-1/PD-L1 checkpoint inhibition require accurate patient selection to assure good clinical outcome. PD-L1 immunohistochemistry is the current biomarker assay used for patient selection, but still imprecise in predicting therapy response. Exploring this issue, we performed computational tissue analysis of PD-L1 immunostaining in procured NSCLC tissues (n = 50) using the Merck KGaA anti-PD-L1 clone MKP1A07310.

View Article and Find Full Text PDF

The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants.

View Article and Find Full Text PDF