Publications by authors named "C Weder"

Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm.

View Article and Find Full Text PDF

Double polymer networks (DNs) consist of two interpenetrating polymer networks and can offer properties that are not merely a sum of the parts. Here, we report an elastic DN made from two supramolecular polymers (SMPs) that consist of the same poly(n-butyl acrylate) (BA) backbone. The two polymers feature different non-covalent binding motifs, which form dynamic, reversible cross-links.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a simple method for creating hybrid organic-inorganic nanostructures using block copolymer-based photonic microspheres that integrate gold nanoparticles.
  • - The process utilizes confined self-assembly within emulsion droplets to form "onion-like" spherical structures that can effectively incorporate metal ions via a preferential solvent (ethanol).
  • - The final product showcases well-defined optical properties, including a photonic bandgap and plasmonic resonance, proving the effectiveness of this easy two-step fabrication technique for advanced materials.
View Article and Find Full Text PDF

Many stimuli-responsive materials harness the reversible association of supramolecular binding motifs to enable advanced functionalities such as self-healing, switchable adhesion, or mechanical adaptation. Despite extensive research into the structure-property relationships of these materials, direct correlations between molecular-level changes in supramolecular binding and macroscopic material behaviors have mostly remained elusive. Here, we show that this challenge can be overcome with supramolecular binding motifs featuring integrated binding indicators.

View Article and Find Full Text PDF

Membranes are widely used for separation processes in applications such as water desalination, batteries and dialysis, and are crucial in key sectors of our economy and society. The majority of technologically exploited membranes are based on solid polymers and function as passive barriers, whose transport characteristics are governed by their chemical composition and nanostructure. Although such membranes are ubiquitous, it has proved challenging to maximize selectivity and permeability independently, leading to trade-offs between these pertinent characteristics.

View Article and Find Full Text PDF