In this research work, we show the successful inscription of fiber Bragg gratings into carbon-coated pure silica as well as germanium-doped glass fibers by applying the pulsed laser point-by-point manufacturing technique. First, the parameters used for the Ti:sapphire femtosecond laser process are demonstrated. Without removing the polymeric carbon coating, destruction-free formation of highly reflective Bragg gratings is performed with selected types of hermetically enclosed fibers.
View Article and Find Full Text PDFIntroduction: Over the last decade endovascular stenting of aortic aneurysm (EVAR) has been developed from single centre experiences to a standard procedure. With increasing clinical expertise and medical technology advances treatment of even complex aneurysms are feasible by endovascular methods. One integral part for the success of this minimally invasive procedure is innovative and improved vascular imaging to generate exact measurements and correct placement of stent prosthesis.
View Article and Find Full Text PDFFemtosecond laser pulses were used for the direct point-by-point inscription of waveguides into the cladding of standard single-mode fibers. Homogeneous S-shaped waveguides have been processed as a bundle of overlapping lines without damaging the surrounding material. Within these structures, FBGs have been successfully inscribed and characterized.
View Article and Find Full Text PDF