Publications by authors named "C W RUCKER"

Concentric push-pull robots (CPPR) operate through the mechanical interactions of concentrically nested, laser-cut tubes with offset stiffness centers. The distal tips of the tubes are attached to each other, and relative displacement of the tube bases generates bending in the CPPR. Previous CPPR kinematic models assumed two tubes, planar shapes, no torsion, and no external loads.

View Article and Find Full Text PDF

Organosiloxanes are industrially produced worldwide in millions of tons per annum and are widely used by industry, professionals, and consumers. Some of these compounds are PBT (persistent, biaccumulative and toxic) or vPvB (very persistent and very bioaccumulative). If organosiloxanes react at all in the environment, Si-O bonds are hydrolyzed or Si-C bonds are oxidatively cleaved, to result finally in silica and carbon dioxide.

View Article and Find Full Text PDF

Methylsiloxanes, compounds that contain HC-Si-O subunits in their molecular structure, are emerging ubiquitous pollutants now detected in many environmental compartments. These compounds and generally Si-C bonds do not occur in living nature, but are industrially produced worldwide in millions of tons per annum and are widely used, resulting in their release to the environment. It is an open question whether or to what extent microorganisms are able to decompose these compounds.

View Article and Find Full Text PDF

Continuum robots are not constructed with discrete joints but, instead, change shape and position their tip by flexing along their entire length. Their narrow curvilinear shape makes them well suited to passing through body lumens, natural orifices, or small surgical incisions to perform minimally invasive procedures. Modeling and controlling these robots are, however, substantially more complex than traditional robots comprised of rigid links connected by discrete joints.

View Article and Find Full Text PDF

Developing high-strength continuum robots can be challenging without compromising on the overall size of the robot, the complexity of design and the range of motion. In this work, we explore how the load capacity of continuum robots can drastically be improved through a combination of backbone design and convergent actuation path routing. We propose a rhombus-patterned backbone structure composed of thin walled-plates that can be easily fabricated via 3D printing and exhibits high shear and torsional stiffness while allowing bending.

View Article and Find Full Text PDF