Publications by authors named "C W Pilcher"

Background: Point-of-care HIV viral load testing may enhance patient care and improve HIV health services. We aimed to evaluate the feasibility and acceptability of implementing such testing in a high-volume community sexual health clinic in the United States.

Methods: We conducted a cross-sectional, mixed-methods study.

View Article and Find Full Text PDF

Kinesin-like protein 18A (KIF18A) is a member of the kinesin family of molecular motor proteins, which utilise energy from the hydrolysis of adenosine triphosphate (ATP) to regulate critical cellular processes such as chromosome movement and microtubule dynamics. KIF18A plays a vital role in controlling microtubule length, which is crucial for maintaining proper cell function and division. Notably, increased expression levels of KIF18A have been observed in various types of cancer, indicating its potential involvement in tumour progression.

View Article and Find Full Text PDF

Despite antiretroviral therapy (ART), HIV persists in latently-infected cells (the HIV reservoir) which decay slowly over time. Here, leveraging >500 longitudinal samples from 67 people living with HIV (PLWH) treated during acute infection, we developed a mathematical model to predict reservoir decay from peripheral CD4 + T cells. Nonlinear generalized additive models demonstrated rapid biphasic decay of intact DNA (week 0-5: t ~ 2.

View Article and Find Full Text PDF

Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged.

View Article and Find Full Text PDF

Despite antiretroviral therapy (ART), HIV persists in latently-infected cells ("the reservoir") which decay slowly over time. Here, leveraging >500 longitudinal samples from 67 people with HIV (PWH) treated during acute infection, we developed a novel mathematical model to predict reservoir decay from peripheral CD4+ T cells. Nonlinear generalized additive models demonstrated rapid biphasic decay of intact DNA (week 0-5: t~2.

View Article and Find Full Text PDF