The phenomenon of underscreening in concentrated electrolyte solutions leads to a larger decay length of the charge-charge correlation than the prediction of Debye-Hückel (DH) theory and has found a resurgence of both theoretical and experimental interest in the chemical physics community. To systematically understand and investigate this phenomenon in electrolytes requires a theory of concentrated electrolytes to describe charge-charge correlations beyond the DH theory. We review the theories of electrolytes that can transition from the DH limit to concentrations where charge correlations dominate, giving rise to underscreening and the associated Kirkwood Transitions (KTs).
View Article and Find Full Text PDFMetal carbonates, which are ubiquitous in the near-surface mineral record, are a major product of biomineralizing organisms and serve as important targets for capturing anthropogenic CO emissions. However, pathways of carbonate mineralization typically diverge from classical predictions due to the involvement of disordered precursors, such as the dense liquid phase (DLP), yet little is known about DLP formation or solidification processes. Using in situ methods we report that a highly hydrated bicarbonate DLP forms via liquid-liquid phase separation and transforms into hollow hydrated amorphous CaCO particles.
View Article and Find Full Text PDFWe establish the connection between the measured small angle x-ray scattering signal and the charge-charge correlations underlying Kirkwood transitions (KTs) in 1:1, 2:1, and 3:1 aqueous electrolytes. These measurements allow us to obtain underscreening lengths for bulk electrolytes independently verified by theory and simulations. Furthermore, we generalize the concept of KTs beyond those theoretically predicted for 1:1 electrolytes, which involves the inverse screening length, a0, and the inverse periodicity length, Q0.
View Article and Find Full Text PDFMicrobial assemblages under the sea ice of the Dease Strait, Canadian Arctic, were sequenced for metagenomes of a small size fraction (0.2-3 μm). The community from early March was typical for this season, with - and Gammaproteobacteria as the dominant taxa, followed by Thaumarchaeota and Bacteroidetes.
View Article and Find Full Text PDF