Bay-scale empirical evaluations of how bivalve aquaculture alters plankton composition, and subsequently ecological functioning and higher trophic levels, are lacking. Temporal, inter- and within-bay variation in hydrodynamic, environmental, and aquaculture pressure complicate plankton monitoring design to detect bay-scale changes and inform aquaculture ecosystem interactions. Here, we used flow cytometry to investigate spatio-temporal variations in bacteria and phytoplankton (< 20 μm) composition in four bivalve aquaculture embayments.
View Article and Find Full Text PDFShip ballast residual sediments are an important vector of introduction for non-indigenous species. We evaluated the proportion of residual sediments and associated organisms released during de-ballasting operations of a commercial bulk carrier and estimated a total residual sediment accumulation of ∼13 t, with accumulations of up to 20 cm in some tank areas that had accumulated over 11 years. We observed interior hull-fouling (anemones, hydrozoans, and bryozoans) and high abundances of viable invertebrate resting stages and dinoflagellate cysts in sediments.
View Article and Find Full Text PDFThe disaggregated inorganic grain size (DIGS) of bottom sediment analyzed with a Coulter Counter (CC) has been used to show that the fraction of sediment deposited in flocs (floc fraction) increased in both the near and far field after the introduction of open cage salmon aquaculture, altering benthic habitat and species composition. As a result, DIGS was identified as a potential indicator of regional environmental changes due to aquaculture. Laser diffraction is an attractive alternative to the CC because of its greater efficiency and larger size range.
View Article and Find Full Text PDFCoastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution.
View Article and Find Full Text PDFMultifactorial studies assessing the cumulative effects of natural and anthropogenic stressors on individual stress response are crucial to understand how organisms and populations cope with environmental change. We tested direct and indirect causal pathways through which environmental stressors affect the stress response of wild gilthead seabream in Mediterranean costal lagoons using an integrative PLS-PM approach. We integrated information on 10 environmental variables and 36 physiological variables into seven latent variables reflecting lagoons features and fish health.
View Article and Find Full Text PDF