Am J Dent
October 2018
Purpose: To evaluate the longevity and factors associated with failure of primary teeth restorations placed in high caries-risk children.
Methods: The sample was comprised of children treated in a University Dental Service. Patients' records were screened retrospectively to determine whether they had received restorative treatment in primary teeth presenting cavitated caries lesions.
Aim: To assess functional effects of silica nanoparticles (SiO-NPs) on human mesenchymal stem cell (hMSC) cardiac integration potential.
Methods: SiO-NPs were synthesized and their internalization effects on hMSCs analyzed with particular emphasis on interaction of hMSCs with the cardiac environment Results: SiO-NP internalization affected the area and maturation level of hMSC focal adhesions, accounting for increased in vitro adhesion capacity and augmented engraftment in the myocardial tissue upon cell injection in infarcted isolated rat hearts. SiO-NP treatment also enhanced hMSC expression of Connexin-43, favoring hMSC interaction with cocultured cardiac myoblasts in an ischemia-like environment.
Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies. Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application.
View Article and Find Full Text PDFBackground: Treatment of myocardial infarction with mesenchymal stem cells (MSCs) has proven beneficial effects in both animal and clinical studies. Engineered silica nanoparticles (SiO2-NPs) have been extensively used as contrast agents in regenerative medicine, due to their resistance to degradation and ease of functionalization. However, there are still controversies on their effective biosafety on cellular systems.
View Article and Find Full Text PDFThe potentialities to apply mesenchymal stem cells (MSCs) in regenerative medicine have been extensively studied over the last decades. In the cardiovascular disease (CVD) field, MSCs-based therapy is the subject of great expectations. Its therapeutic potential has been already shown in several preclinical models and both the safety and efficacy of MSCs-based therapy are being evaluated in humans.
View Article and Find Full Text PDF