This study evaluates the use of poly(vinyl alcohol), collagen, and chitosan blends for developing a microneedle patch for the delivery of meloxicam (MEL). Results confirm successful MEL encapsulation, structural integrity, and chemical stability even after ethylene oxide sterilization. Mechanical testing indicates the patch has the required properties for effective skin penetration and drug delivery, as demonstrated by load-displacement curves showing successful penetration of pig ear surfaces at 3N of normal load.
View Article and Find Full Text PDFJ Soc Cardiovasc Angiogr Interv
March 2024
Background: Dengue human infection models (DHIMs) are important tools to down-select dengue vaccine candidates and establish tetravalent efficacy before advanced clinical field trials. We aimed to provide data for the safety and immunogenicity of DHIM and evaluate dengue vaccine efficacy.
Methods: We performed an open-label, phase 1 trial at the University of Maryland (Baltimore, MD, USA).
Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip-domain serine proteases (cSPs) and/or their non-catalytic homologs, which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network.
View Article and Find Full Text PDF