Indoleamine 2,3-dioxygenase 1 () and originated from gene duplication before vertebrate divergence. While IDO1 has a well-defined role in immune regulation, the biological role of IDO2 remains unclear. Discovered in 2007, is located near the gene.
View Article and Find Full Text PDFThis study evaluated titers and amplitudes of anti-E2 antibodies (anti-E2-Abs) and neutralizing antibodies against hepatitis C virus (HCV; anti-HCV-nAbs) in HIV/HCV-coinfected individuals over five years after successful HCV treatment completion. We retrospectively analyzed 76 HIV/HCV-coinfected patients achieving sustained virologic response post-HCV treatment. Plasma levels of anti-E2-Abs and anti-HCV-nAbs against five HCV genotypes (Gt1a, Gt1b, Gt2a, Gt3a, and Gt4a) were determined using ELISA and microneutralization assays, respectively.
View Article and Find Full Text PDFSmall synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV-1-derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments.
View Article and Find Full Text PDFThe tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME.
View Article and Find Full Text PDF