The interaction of light with biological tissues is an intriguing area of research that has led to the development of numerous techniques and technologies. The randomness inherent in biological tissues can trap light through multiple scattering events and provide optical feedback to generate random lasing emission. The emerging random lasing signals carry sensitive information about the scattering dynamics of the medium, which can help in identifying abnormalities in tissues, while simultaneously functioning as an illumination source for imaging.
View Article and Find Full Text PDFBackground: There are no large studies to define the normal value of glycated haemoglobin (HbA1c) measured in full term pregnant women measured at the time of delivery.
Research Design And Methods: The study was conducted at three government hospitals in South India. Clinical data, maternal blood sample and foetal cord blood sample were collected from women admitted for safe confinement.
Nanomaterials (Basel)
August 2023
A disordered photonic medium is one in which scatterers are distributed randomly. Light entering such media experiences multiple scattering events, resulting in a "random walk"-like propagation. Micro- and nano-scale structured disordered photonic media offer platforms for enhanced light-matter interaction, and in the presence of an appropriate gain medium, coherence-tunable, quasi-monochromatic lasing emission known as random lasing can be obtained.
View Article and Find Full Text PDFNarrow bandwidth, high brightness, and spectral tunability are the unique properties of lasers that make them extremely desirable for fluorescence imaging applications. However, due to the high spatial coherence, conventional lasers are often incompatible for wide-field fluorescence imaging. The presence of parasitic artefacts under coherent illumination causes uneven excitation of fluorophores, which has a critical impact on the reliability, resolution, and efficiency of fluorescence imaging.
View Article and Find Full Text PDFA method for fabricating bio-inspired scattering substrates based on polydimethylsiloxane (PDMS) for spatially incoherent random lasing is presented. The leaves of monstera and piper sarmentosum plants are used to mold PDMS polymer to form wrinkle-like scattering substrates, which are then used with a liquid gain medium for random lasing. Scattering is attributed to the surface roughness () of the samples.
View Article and Find Full Text PDF