Publications by authors named "C Vidaud"

Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana.

View Article and Find Full Text PDF

Determining the affinity of proteins for uranyl is key to understand the toxicity of this cation and to further develop decorporation strategies. However, usual techniques to achieve that goal often require specific equipment and expertise. Here, we propose a simple, efficient, fluorescence-based method to assess the affinity of proteins and peptides for uranyl, at equilibrium and in buffered solution.

View Article and Find Full Text PDF

Uranium exposure can lead to neurobehavioral alterations in particular of the monoaminergic system, even at non-cytotoxic concentrations. However, the mechanisms of uranium neurotoxicity after non-cytotoxic exposure are still poorly understood. In particular, imaging uranium in neurons at low intracellular concentration is still very challenging.

View Article and Find Full Text PDF
Article Synopsis
  • Plutonium mainly accumulates in the liver and bones, but how it specifically gathers in bones remains unknown.
  • Fetuin, a protein tied to bone metabolism, is suggested to act as a potential transporter of plutonium, alongside transferrin.
  • Recent research showed that transferrin and fetuin have very similar binding affinities for plutonium, indicating they might compete to bind plutonium in the bloodstream or at bone sites, with findings in line with how plutonium is distributed in the human body.
View Article and Find Full Text PDF

The study of isotopic variations of endogenous and toxic metals in fluids and tissues is a recent research topic with an outstanding potential in biomedical and toxicological investigations. Most of the analyses have been performed so far in bulk samples, which can make the interpretation of results entangled, since different sources of stress or the alteration of different metabolic processes can lead to similar variations in the isotopic compositions of the elements in bulk samples. The downscaling of the isotopic analysis of elements at the sub-cellular level, is considered as a more promising alternative.

View Article and Find Full Text PDF