Introduction: The molecular and physiological mechanisms activated in plants during drought stress tolerance are regulated by several key genes with both metabolic and regulatory roles. Studies focusing on crop gene expression following plant growth-promoting rhizobacteria (PGPR) inoculation may help understand which bioinoculant is closely related to the induction of abiotic stress responses.
Methods: Here, we performed a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarise information regarding plant-PGPR interactions, focusing on the regulation of nine genes involved in plant drought stress response.
Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change.
View Article and Find Full Text PDFThe rapid spread of the Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pathogen has generated a huge international public health emergency. Currently the reference diagnostic technique for virus determination is Reverse Transcription Polymerase Chain Reaction (RT-PCR) real time analysis that requires specialized equipment, reagents and facilities and typically 3-4 h to perform. Thus, the realization of simple, low-cost, small-size, rapid and point-of-care diagnostics tests has become a global priority.
View Article and Find Full Text PDFObjectives: To compare fosfomycin susceptibility testing with the commercial agar dilution (AD) test, AD Fosfomycin (Liofilchem, Roseto degli Abruzzi, Italy) and the reference AD method, using a collection of multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa clinical isolates.
Methods: The collection included 119 carbapenemase-producing Enterobacterales, 53 Enterobacterales producing acquired AmpC-type and/or extended-spectrum β-lactamases and 38 carbapenemase-producing P. aeruginosa, including representatives of different high-risk clones.
Although hundreds of plant lineages have independently evolved dioecy (that is, separation of the sexes), the underlying genetic basis remains largely elusive. Here we show that diverse poplar species carry partial duplicates of the ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17) orthologue in the male-specific region of the Y chromosome. These duplicates give rise to small RNAs apparently causing male-specific DNA methylation and silencing of the ARR17 gene.
View Article and Find Full Text PDF