The identification of novel regulators of tumor progression is a key challenge to gain knowledge on the biology of small intestinal neuroendocrine tumors (SI-NETs). We recently identified the loss of the axon guidance protein semaphorin 3F as a protumoral event in SI-NETs. Interestingly the expression of its receptor neuropilin-2 (NRP-2) was still maintained.
View Article and Find Full Text PDFStreptozotocin-based chemotherapy is the first-line chemotherapy recommended for advanced pancreatic neuroendocrine tumors (pNETs), whereas targeted therapies, including mTOR inhibitors, are available in second-line treatment. Unfortunately, objective response rates to both treatments are limited. Because mTOR pathway activation, commonly observed in pNETs, has been reported as one of the major mechanisms accounting for chemoresistance, we investigated the potential benefit of mTOR inhibition combined with streptozotocin treatment in a subset of pNETs, namely insulinomas.
View Article and Find Full Text PDFmTOR and Unfolded Protein Response (UPR) are two signaling pathways frequently activated in cancer cells. The mTOR pathway has been shown to be up-regulated in most gastroenteropancreatic neuroendocrine tumors. In contrast, little is known about the UPR status in neoplastic neuroendocrine cells.
View Article and Find Full Text PDFObjectives Several targeted therapies are available for metastatic neuroendocrine tumours (NETs) but no predictive factor of response to these treatments has been identified yet. Our aim was to identify and evaluate clinical, biological, histological and functional markers of response to everolimus. Methods We retrospectively reviewed 53 patients with NETs treated with everolimus (68 % in clinical trials).
View Article and Find Full Text PDFGastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs.
View Article and Find Full Text PDF