Background: Pyruvate dehydrogenase complex (PDHc) deficiencies are an important cause of primary lactic acidosis. Most cases result from mutations in the X-linked gene for the pyruvate dehydrogenase E1α subunit (PDHA1) while a few cases result from mutations in genes for E1β (PDHB), E2 (DLAT), E3 (DLD) and E3BP (PDHX) subunits or PDH-phosphatase (PDP1).
Aim: To report molecular characterization of 82 PDHc-deficient patients and analyze structural effects of novel missense mutations in PDHA1.
Dichloroacetate (DCA) is a structural analog of pyruvate that has been recommended for the treatment of primary lactic acidemia, particularly in patients with pyruvate dehydrogenase (PDHC) deficiency. Recent reports have demonstrated that the response to DCA may depend on the type of molecular abnormality. In this study, we investigated the response to DCA in various PDHC-deficient cell lines and tried to determine the mechanism involved.
View Article and Find Full Text PDFCarnitine-acylcarnitine translocase (CAC) deficiency is a rare autosomal recessive disorder of long-chain fatty acid oxidation with a severe outcome. We report mutation analysis in a cohort of 12 patients. Twelve mutations were identified of which 9 have not been reported so far (G28C, D32N, R178Q, P230R, D231H, 179delG, 802delG, 69-70insTGTGC, and 609-1g>a).
View Article and Find Full Text PDF