Purpose: The purpose of this study was to develop a deep learning algorithm for detecting and quantifying incomplete retinal pigment epithelium and outer retinal atrophy (iRORA) and complete retinal pigment epithelium and outer retinal atrophy (cRORA) in optical coherence tomography (OCT) that generalizes well to data from different devices and to validate in an intermediate age-related macular degeneration (iAMD) cohort.
Methods: The algorithm comprised a domain adaptation (DA) model, promoting generalization across devices, and a segmentation model for detecting granular biomarkers defining iRORA/cRORA, which are combined into iRORA/cRORA segmentations. Manual annotations of iRORA/cRORA in OCTs from different devices in the MACUSTAR study (168 patients with iAMD) were compared to the algorithm's output.
Deep learning classification models for medical image analysis often perform well on data from scanners that were used to acquire the training data. However, when these models are applied to data from different vendors, their performance tends to drop substantially. Artifacts that only occur within scans from specific scanners are major causes of this poor generalizability.
View Article and Find Full Text PDFIEEE Trans Med Imaging
January 2024
The early detection of glaucoma is essential in preventing visual impairment. Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible. While AI models for glaucoma screening from CFPs have shown promising results in laboratory settings, their performance decreases significantly in real-world scenarios due to the presence of out-of-distribution and low-quality images.
View Article and Find Full Text PDFPurpose: Significant visual impairment due to glaucoma is largely caused by the disease being detected too late.
Objective: To build a labeled data set for training artificial intelligence (AI) algorithms for glaucoma screening by fundus photography, to assess the accuracy of the graders, and to characterize the features of all eyes with referable glaucoma (RG).
Design: Cross-sectional study.