Publications by authors named "C Varin"

The dorsal striatum is instrumental in regulating motor control and goal-directed behaviors. The classical description of the two output pathways of the dorsal striatum highlights their antagonistic control over actions. However, recent experimental evidence implicates both pathways and their coordinated activities during actions.

View Article and Find Full Text PDF

Bromine in ice cores has been proposed as a qualitative sea ice proxy to produce sea ice reconstructions for the polar regions. Here we report the first statistical validation of this proxy with satellite sea ice observations by combining bromine enrichment (with respect to seawater, Br) records from three Greenlandic ice cores (SIGMA-A, NU and RECAP) with satellite sea ice imagery, over three decades. We find that during the 1984-2016 satellite-era, ice core Br values are significantly correlated with first-year sea ice formed in the Baffin Bay and Labrador Sea supporting that the gas-phase bromine enrichment processes, preferentially occurring over the sea ice surface, are the main driver for the Br signal in ice cores.

View Article and Find Full Text PDF

The role of the striatum in motor control is commonly assumed to be mediated by the two striatal efferent pathways characterized by striatal projection neurons (SPNs) expressing dopamine (DA) D1 receptors or D2 receptors (D1-SPNs and D2-SPNs, respectively), without regard to SPNs coexpressing both receptors (D1/D2-SPNs). Here we developed an approach to target these hybrid SPNs in mice and demonstrate that, although these SPNs are less abundant, they have a major role in guiding the motor function of the other two populations. D1/D2-SPNs project exclusively to the external globus pallidus and have specific electrophysiological features with distinctive integration of DA signals.

View Article and Find Full Text PDF

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running.

View Article and Find Full Text PDF

The basal ganglia are known to control actions and modulate movements. Neuronal activity in the two efferent pathways of the dorsal striatum is critical for appropriate behavioral control. Previous evidence has led to divergent conclusions on the respective engagement of both pathways during actions.

View Article and Find Full Text PDF