Publications by authors named "C Valeriani"

The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.

View Article and Find Full Text PDF

Carnivory in plants is an unusual trait that has arisen multiple times, independently, throughout evolutionary history. Plants in the genus are carnivorous and feed on microorganisms that live in soil using modified subterranean leaf structures (rhizophylls). A surprisingly broad array of microfauna has been observed in the plants' digestive chambers, including ciliates, amoebae, and soil mites.

View Article and Find Full Text PDF

In the present work we have studied collectives of active disks with an energy depot, moving in the two-dimensional plane and interacting an excluded volume. The energy depot accounts for the extraction of energy taking place at the level of each particle in order to perform self-propulsion, included in an underdamped Langevin dynamics. We show that this model undergoes a flocking transition, exhibiting some of the key features of the Vicsek model, namely, band formation and giant number fluctuations.

View Article and Find Full Text PDF

In this work, with the intent of exploring the out-of-equilibrium polymerization of active patchy particles in linear chains, we study a suspension of active bifunctional Brownian particles (ABBPs). At all studied temperatures and densities, ABBPs self-assemble in aggregating chains, as opposed to the uniformly space-distributed chains observed in the corresponding passive systems. The main effect of activity, other than inducing chain aggregation, is to reduce the chain length and favour the alignment of the propulsion vectors in the bonding process.

View Article and Find Full Text PDF

Non-equilibrium clustering and percolation are investigated in an archetypal model of two-dimensional active matter using dynamic simulations of self-propelled Brownian repulsive particles. We concentrate on the single-phase region up to moderate levels of activity, before motility-induced phase separation (MIPS) sets in. Weak activity promotes cluster formation and lowers the percolation threshold.

View Article and Find Full Text PDF