Publications by authors named "C VAN SUMERE-DE PRETER"

Article Synopsis
  • Recent advancements in high-density multi-channel electrodes allow researchers to record large numbers of neurons from previously tough-to-access brain areas.
  • The study evaluated five popular spike-sorting software packages in the rostral ventromedial medulla (RVM) region, revealing that different sorters produced unique results and varied levels of manual curation required.
  • Kilosort3 and IronClust were the most efficient, needing less manual curation while identifying more neuron units, while Tridesclous identified the fewest units but all packages successfully detected key RVM cell types.
View Article and Find Full Text PDF

Manipulation of neural circuits targeted by morphine enables pain relief without opioids.

View Article and Find Full Text PDF

The descending-pain modulating circuit controls the experience of pain by modulating transmission of sensory signals through the dorsal horn. This circuit's key output node, the rostral ventromedial medulla (RVM), integrates 'top-down' and 'bottom-up' inputs that regulate functionally defined RVM cell types, 'OFF-cells' and 'ON-cells', which respectively suppress or facilitate pain-related sensory processing. While recent advances have sought molecular definition of RVM cell types, conflicting behavioral findings highlight challenges involved in aligning functional and molecularly defined types.

View Article and Find Full Text PDF

The brain is able to amplify or suppress nociceptive signals by means of descending projections to the spinal and trigeminal dorsal horns from the rostral ventromedial medulla (RVM). Two physiologically defined cell classes within RVM, "ON-cells" and "OFF-cells," respectively facilitate and inhibit nociceptive transmission. However, sensory pathways through which nociceptive input drives changes in RVM cell activity are only now being defined.

View Article and Find Full Text PDF

Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice.

View Article and Find Full Text PDF