Publications by authors named "C U Murade"

Among the various types of interactions between biomolecules, electrostatic interactions dominate as these are long-range interactions and are often a generic first step in the recruitment of specific ligands. DNA, being a highly charged molecule, attracts a plethora of molecules. Interactions between DNA and proteins or small molecules shape the overall function of the cell.

View Article and Find Full Text PDF

Living cells are complex systems characterized by fluids crowded by hundreds of different elements, including, in particular, a high density of polymers. They are an excellent and challenging laboratory to study exotic emerging physical phenomena, where entropic forces emerge from the organization processes of many-body interactions. The competition between microscopic and entropic forces may generate complex behaviors, such as phase transitions, which living cells may use to accomplish their functions.

View Article and Find Full Text PDF

Molecules that bind DNA by intercalating its bases remain among the most potent cancer therapies and antimicrobials due to their interference with DNA-processing proteins. To accelerate the discovery of novel intercalating drugs, we designed a fluorescence resonance energy transfer (FRET)-based probe that reports on DNA intercalation, allowing rapid and sensitive screening of chemical libraries in a high-throughput format. We demonstrate that the method correctly identifies known DNA intercalators in approved drug libraries and discover previously unreported intercalating compounds.

View Article and Find Full Text PDF

We describe a molecular sensor that reports, using fluorescence resonance energy transfer (FRET), on the degree of macromolecular crowding in different cellular compartments. The oligonucleotide-based sensor is sensitive to changes in the volume fraction of macromolecules over a wide range in vitro and, when introduced in cells, rapidly distributes and shows a striking contrast between the cytosol and the nucleus. This contrast can be modulated by osmotic stress or by using a number of drugs that alter chromatin organization within the nucleus.

View Article and Find Full Text PDF

Fluoropolymers are widely used as coatings for their robustness, water-repellence, and chemical inertness. In contact with water, they are known to assume a negative surface charge, which is commonly attributed to adsorbed hydroxyl ions. Here, we demonstrate that a small fraction of these ions permanently sticks to surfaces of Teflon AF and Cytop, two of the most common fluoropolymer materials, upon prolonged exposure to water.

View Article and Find Full Text PDF