Publications by authors named "C Tsallis"

Selma Lagerlöf said that culture is what remains when one has forgotten everything we had learned. Without any warranty, through ongoing research tasks, that I will ever attain this high level of wisdom, I simply share here reminiscences that have played, during my life, an important role in my incursions in science, mainly in theoretical physics. I end by presenting some perspectives for future developments.

View Article and Find Full Text PDF

Within the de Broglie-Bohm theory, we numerically study a generic two-dimensional anharmonic oscillator including cubic and quartic interactions in addition to a bilinear coupling term. Our analysis of the quantum velocity fields and trajectories reveals the emergence of dynamical vortices. In their vicinity, fingerprints of chaotic behavior such as unpredictability and sensitivity to initial conditions are detected.

View Article and Find Full Text PDF

The thermal conductance of a one-dimensional classical inertial Heisenberg model of linear size is computed, considering the first and last particles in thermal contact with heat baths at higher and lower temperatures, Th and Tl (Th>Tl), respectively. These particles at the extremities of the chain are subjected to standard Langevin dynamics, whereas all remaining rotators (i=2,⋯,L-1) interact by means of nearest-neighbor ferromagnetic couplings and evolve in time following their own equations of motion, being investigated numerically through molecular-dynamics numerical simulations. Fourier's law for the heat flux is verified numerically, with the thermal conductivity becoming independent of the lattice size in the limit L→∞, scaling with the temperature, as κ(T)∼T-2.

View Article and Find Full Text PDF

The Boltzmann-Gibbs (BG) statistical mechanics constitutes one of the pillars of contemporary theoretical physics. It is constructed upon the other pillars-classical, quantum, relativistic mechanics and Maxwell equations for electromagnetism-and its foundations are grounded on the optimization of the BG (additive) entropic functional [Formula: see text]. Its use in the realm of classical mechanics is legitimate for vast classes of nonlinear dynamical systems under the assumption that the maximal Lyapunov exponent is (currently referred to as ), and its validity has been experimentally verified in countless situations.

View Article and Find Full Text PDF

The brain is a complex system whose understanding enables potentially deeper approaches to mental phenomena. Dynamics of wide classes of complex systems have been satisfactorily described within q-statistics, a current generalization of Boltzmann-Gibbs (BG) statistics. Here, we study human electroencephalograms of typical human adults (EEG), very specifically their inter-occurrence times across an arbitrarily chosen threshold of the signal (observed, for instance, at the midparietal location in scalp).

View Article and Find Full Text PDF