Publications by authors named "C Trosseille"

The time-resolved x-ray diffraction platform at the National Ignition Facility (NIF) fields electronic sensors closer to the exploding laser-driven target than any other NIF diagnostic in order to directly detect diffracted x rays from highly compressed materials. We document strategies to characterize and mitigate the unacceptably high background signals observed in this geometry. We specifically assess the possible effects of electromagnetic pulse, x-ray fluorescence, hot electrons, and sensor-specific non-x-ray artifacts.

View Article and Find Full Text PDF

Hardened gated x-ray detectors use photographic film as the data recording medium due to its low sensitivity to the high-yield neutron environments at the National Ignition Facility (NIF). The photographic film is digitized with a Photometric Data Systems (PDS) microdensitometer, which measures the film's optical density. The PDS scanner is able to measure a dynamic range of 0-5 OD; however, raster scanning the film is time consuming and maintenance of the instrument is challenging due to legacy technology.

View Article and Find Full Text PDF

Inertial confinement fusion experiments taking place at the National Ignition Facility are generating ever increasing amounts of fusion energy, with the deuterium tritium fusion neutron yield growing a hundredfold over the past ten years. Strategies must be developed to mitigate this harsh environment's deleterious effects on the operation and the performance of the time-resolved x-ray imagers deployed in the National Ignition Facility target bay to record the dynamics of the implosions. We review the evolution of these imagers in recent years and detail some of the past and present efforts undertaken to maintain or improve the quality of the experimental data collected on high neutron yield experiments.

View Article and Find Full Text PDF

Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1.

View Article and Find Full Text PDF

An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.

View Article and Find Full Text PDF