Publications by authors named "C Trollet"

Across the lifespan, diet and physical activity profiles substantially influence immunometabolic health. DNA methylation, as a tissue-specific marker sensitive to behavioral change, may mediate these effects through modulation of transcription factor binding and subsequent gene expression. Despite this, few human studies have profiled DNA methylation and gene expression simultaneously in multiple tissues or examined how molecular levels react and interact in response to lifestyle changes.

View Article and Find Full Text PDF
Article Synopsis
  • Myopathies are a diverse set of disorders that lead to ongoing muscle weakness and degeneration, significantly affecting patients' lives.
  • Recent studies indicate that tailored physical exercise can help reduce symptoms and enhance certain functional aspects for individuals with these muscle diseases.
  • This review examines current research on how exercise influences molecular processes, muscle strength, endurance, overall function, and improvements in quality of life for patients with myopathies.
View Article and Find Full Text PDF

Background: Exercise is widely considered to have beneficial impact on skeletal muscle aging. In addition, there are also several studies demonstrating a positive effect of exercise on muscular dystrophies. Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant inherited neuromuscular disorder caused by mutations in the PAPBN1 gene.

View Article and Find Full Text PDF

Introduction: Regenerative myogenesis plays a crucial role in mature myofibers to counteract muscular injury or dysfunction due to neuromuscular disorders. The activation of specialized myogenic stem cells, called satellite cells, is intrinsically involved in proliferation and differentiation, followed by myoblast fusion and the formation of multinucleated myofibers.

Areas Covered: This report provides an overview of the role of satellite cells in the neuromuscular system and the potential future impact of proteomic analyses for biomarker discovery, as well as the identification of novel therapeutic targets in muscle disease.

View Article and Find Full Text PDF

This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations.

View Article and Find Full Text PDF