Based on recent progress in mathematical physics, we present a reliable method to analytically solve the linearized Bardeen-Cooper-Schrieffer (BCS) gap equation for a large class of finite-range interaction potentials leading to s-wave superconductivity. With this analysis, we demonstrate that the monotonic growth of the superconducting critical temperature T_{c} with the carrier density n predicted by standard BCS theory, is an artifact of the simplifying assumption that the interaction is quasilocal. In contrast, we show that any well-defined nonlocal potential leads to a "superconducting dome," i.
View Article and Find Full Text PDFTopological insulators (TIs) possess spin-polarized Dirac fermions on their surface but their unique properties are often masked by residual carriers in the bulk. Recently, (Sb Bi )Te was introduced as a non-metallic TI whose carrier type can be tuned from n to p across the charge neutrality point. By using time- and angle-resolved photoemission spectroscopy, we investigate the ultrafast carrier dynamics in the series of (Sb Bi )Te.
View Article and Find Full Text PDFWe obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-dimensional (2D) electronic system proximity coupled to a superconductor, making minimal assumptions about both the 2D system and the superconductor. Using our general results we show that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum disulfide, and an s-wave superconductor with Rashba spin-orbit coupling exhibits odd-frequency superconducting pairing. Our results allow the identification of a new class of systems among van der Waals heterostructures in which odd-frequency superconductivity should be present.
View Article and Find Full Text PDFWe formulate a continuum model to study the low-energy electronic structure of heterostructures formed by graphene on a strong three-dimensional topological insulator (TI) for the cases of both commensurate and incommensurate stacking. The incommensurability can be due to a twist angle between graphene and the TI surface or a lattice mismatch between the two systems. We find that the proximity of the TI induces in graphene a strong enhancement of the spin-orbit coupling that can be tuned via the twist angle.
View Article and Find Full Text PDFScedosporium apiospermum is a deadly fungal infection that can infect the central nervous system, particularly in immunocompromised patients. We present two cases of Scedosporium brain abscesses. The first case was fatal and relevant conventional MRI and MR spectroscopy findings are discussed.
View Article and Find Full Text PDF