Publications by authors named "C Thomasin"

Macrophages were found of having a strong capacity of phagocytosing small size microcapsules (MS) and presenting microencapsulated antigens to either CD4+ and CD8- T cells. The class I-restricted presentation of microencapsulated tetanus toxoid by macrophages requires an intracellular processing which might follow the phagosome-to-cytosol route to enter the classical MHC class I presentation pathway. In contrast, presentation of microencapsulated cytotoxic peptide PbCS252-260 to specific CD8+ T cells has been observed with different APC and is not blocked by cytochalasin D, suggesting that peptide released from MS may directly bind to MHC class I molecules on the cell surface.

View Article and Find Full Text PDF

Phase separation (frequently called coacervation) of poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) is a classical method for drug microencapsulation. Here, attempts have been made to describe this process in the light of thermodynamics. Different PLA/PLGAs were dissolved in either dichloromethane or ethyl acetate, phase separated by addition of the coacervating agent silicone oil (PDMS), and hardened in either octamethylcyclotetrasiloxane or hexane.

View Article and Find Full Text PDF

Phase separation of poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA), often called "coacervation" in the pharmaceutical field, is one of the classical methods for peptide drug microencapsulation in biodegradable polyesters. Although numerous studies have used this technique, the underlying physicochemical mechanisms of polyester coacervation under conditions of microsphere production have not been well-described yet. Moreover, the quality of microencapsulation in terms of drug loading efficiency and residual organic solvents is often not entirely satisfactory and depends greatly on the specific drug and polymer used.

View Article and Find Full Text PDF

The use of biodegradable polymer microspheres as a single dose vaccine delivery system was investigated by using tetanus toxoid (TT). In order to compare the immunogenicity of TT-microspheres (TT-MS) with aluminum hydroxide (alum)-based TT, BALB/c mice were immunized with TT in different formulations including individual or mixtures of MS and TT-alum. All TT-MS formulations elicited high proliferative and antibody responses comparable to those obtained with TT-alum formulation.

View Article and Find Full Text PDF