J Proteome Res
February 2024
Accurate and comprehensive peptide precursor ions are crucial to tandem mass-spectrometry-based peptide identification. An identification engine can derive great advantages from the search space reduction enabled by credible and detailed precursors. Furthermore, by considering multiple precursors per spectrum, both the number of identifications and the spectrum explainability can be substantially improved.
View Article and Find Full Text PDFWhen it comes to mass spectrometry data analysis for identification of peptide pairs linked by -hydroxysuccinimide (NHS) ester cross-linkers, search engines bifurcate in their setting of cross-linkable sites. Some restrict NHS ester cross-linkable sites to lysine (K) and protein N-terminus, referred to as K only for short, whereas others additionally include serine (S), threonine (T), and tyrosine (Y) by default. Here, by setting amino acids with chemically inert side chains such as glycine (G), valine (V), and leucine (L) as cross-linkable sites, which serves as a negative control, we show that software-identified STY-cross-links are only as reliable as GVL-cross-links.
View Article and Find Full Text PDFSpectrum prediction using deep learning has attracted a lot of attention in recent years. Although existing deep learning methods have dramatically increased the prediction accuracy, there is still considerable space for improvement, which is presently limited by the difference of fragmentation types or instrument settings. In this work, we use the few-shot learning method to fit the data online to make up for the shortcoming.
View Article and Find Full Text PDFBackground: Neuroprotection for Parkinson's disease (PD) remains elusive. Biomarkers hold the promise of removing roadblocks to therapy development. The National Institute of Neurological Disorders and Stroke has therefore established the Parkinson's Disease Biomarkers Program to promote discovery of PD biomarkers for use in phase II and III clinical trials.
View Article and Find Full Text PDFCell signaling plays a central role in the etiology of cancer. Numerous therapeutics in use or under development target signaling proteins; however, off-target effects often limit assignment of positive clinical response to the intended target. As direct measurements of signaling protein activity are not generally feasible during treatment, there is a need for more powerful methods to determine if therapeutics inhibit their targets and when off-target effects occur.
View Article and Find Full Text PDF