These studies are focused on antagonizing organophosphorous (OP) intoxications by a new conceptual approach using recombinant enzymes encapsulated within sterically stabilized liposomes to enhance diisopropylfluorophosphate (DFP) degradation. The OP hydrolyzing enzyme, organophosphorous acid anhydrolase (OPAA), encapsulated within the liposomes, was employed either alone or in combination with pralidoxime (2-PAM) and/or atropine. The recombinant OPAA enzyme, from the ALTEROMONAS: strain JD6, has high substrate specificity toward a wide range of OP compounds, e.
View Article and Find Full Text PDFThis investigation effort is focused on increasing organophosphate (OP) degradation by phosphotriesterase to antagonize OP intoxication. For these studies, sterically stabilized liposomes encapsulating recombinant phosphotriesterase were employed. This enzyme was obtained from Flavobacterium sp.
View Article and Find Full Text PDFThis article presents a set of proposed guidelines for the safety assessment of new pharmaceutical excipients. These guidelines were developed by the Safety Committee of the International Pharmaceutical Excipients Council and represent a new, scientifically based approach to establishing conditions for the safe use of proposed pharmaceutical excipients utilizing various routes of human exposure. They are based upon the best currently available toxicological science and have taken the deliberations of the International Conference on Harmonization into consideration.
View Article and Find Full Text PDFRecently, a new class of immunomodulating agents, represented by the molecules imiquimod and R-842, has demonstrated potent antiviral and antitumor activities in animal models. In this study, another representative of this class, S-28463 (4-amino-2-ethoxymethyl-alpha,alpha-dimethyl-1H-imidazo[4,5-c]quinoline- 1- ethanol) was evaluated for its immunomodulating and antiviral activities. S-28463 induced IFN and other cytokines in vivo in mice, rats, monkeys and in vitro in human peripheral blood mononuclear cell cultures.
View Article and Find Full Text PDFThe mechanism of cyanide intoxication has been attributed to the inhibition of cytochrome oxidase, thereby decreasing the tissue utilization of oxygen. One mechanism of cyanide antagonism is by sequestering cyanide with methaemoglobin to form cyanmethaemoglobin and another mechanism is detoxifying with a sulphur donor to thiocyanate. Questions have been raised with regard to these classical mechanisms.
View Article and Find Full Text PDF