Supraphysiological shear rates (>2000 s) amplify von Willebrand factor unfurling and increase platelet activation and adhesion. These elevated shear rates and shear rate gradients also play a role in shear-induced platelet aggregation (SIPA). The primary objective of this study is to investigate the contributions of major binding receptors to platelet deposition and SIPA in a stenotic model.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2024
Submicron-textured surfaces have been a promising approach to mitigate biofilm development and control microbial infection. However, the use of the single surface texturing approach is still far from ideal for achieving complete control of microbial infections on implanted biomedical devices. The use of a surface topographic modification that might improve the utility of standard antibiotic therapy could alleviate the complications of biofilms on devices.
View Article and Find Full Text PDFCatheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. Herein, a dualfunction submicron textured nitric oxide (NO)-releasing catheter was developed. The hemocompatibility and antithrombotic activity of vascular catheters were evaluated in both 20 h in vitro blood loop and 7 d in vivo rabbit model.
View Article and Find Full Text PDFBacterial intracellular nucleotide second messenger signaling is involved in biofilm formation and regulates biofilm development. Interference with the bacterial nucleotide second messenger signaling provides a novel approach to control biofilm formation and limit microbial infection in medical devices. In this study, we tethered small-molecule derivatives of 4-arylazo-3,5-diamino-1-pyrazole on polyurethane biomaterial surfaces and measured the biofilm resistance and initial biocompatibility of modified biomaterials in and settings.
View Article and Find Full Text PDFJ Biomed Mater Res A
August 2024
It is accepted that the contact activation complex of the intrinsic pathway of blood coagulation cascade produces active enzymes that lead to plasma coagulation following biomaterial contact. In this study, FXII was activated through contact with hydrophilic glass beads and hydrophobic octadecyltrichlorosilane-modified glass beads from neat buffer solutions. These FXII contact activation products generated from material interaction were found to suppress the procoagulant activity of exogenous αFXIIa, and this inhibition was dependent on surface wettability and the concentration of exogenous αFXIIa.
View Article and Find Full Text PDF