Background: Slips are a leading cause of injury among older adults. Slip recovery measures are often captured using optoelectronic motion capture (OMC) systems that can be costly and typically require a laboratory setting. Inertial measurement unit (IMU) systems show promise as a lower cost, portable, and wearable form of motion capture.
View Article and Find Full Text PDFSustained compressive injury (SCI) in the brain is observed in numerous injury and pathological scenarios, including tumors, ischemic stroke, and traumatic brain injury-related tissue swelling. Sustained compressive injury is characterized by tissue loading over time, and currently, there are few in vitro models suitable to study neural cell responses to strain-dependent sustained compressive injury. Here, we present an in vitro model of sustained compressive neural injury via centrifugation.
View Article and Find Full Text PDFStandard nonlinear regression is commonly used when modeling indifference points due to its ability to closely follow observed data, resulting in a good model fit. However, standard nonlinear regression currently lacks a reasonable distribution-based framework for indifference points, which limits its ability to adequately describe the inherent variability in the data. Software commonly assumes data follow a normal distribution with constant variance.
View Article and Find Full Text PDFThe development of a flow chemistry platform for the generation of modified protein targets via expressed protein ligation (EPL) is described. The flow EPL platform enables efficient ligation reactions with high recoveries of target protein products and superior reaction rates compared to corresponding batch processes. The utility of the flow EPL technology was first demonstrated through the semisynthesis of the tick-derived chemokine-binding protein ACA-01 containing two tyrosine sulfate modifications.
View Article and Find Full Text PDFChemokines are an important family of small proteins integral to leukocyte recruitment during inflammation. Dysregulation of the chemokine-chemokine receptor axis is implicated in many diseases, and both chemokines and their cognate receptors have been the targets of therapeutic development. Analysis of the antigen-binding regions of chemokine-binding nanobodies revealed a sequence motif suggestive of tyrosine sulfation.
View Article and Find Full Text PDF