Publications by authors named "C Szot"

Protein tandem mass spectrometry (MS/MS) often generates sequence-informative fragments from backbone bond cleavages near the termini. This lack of fragmentation in the protein interior is particularly apparent in native top-down mass spectrometry (MS). Improved sequence coverage, critical for reliable annotation of posttranslational modifications and sequence variants, may be obtained from internal fragments generated by multiple backbone cleavage events.

View Article and Find Full Text PDF

Tyrosine sulfation, an understudied but crucial post-translational modification, cannot be directly detected in conventional nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) due to the extreme sulfate lability. Here, we report the detection of sulfate-retaining fragments from LC-electron capture dissociation (ECD) and nanoLC-electron transfer higher energy collision dissociation (EThcD). Sulfopeptide candidates were identified by Proteome Discoverer and MSFragger analysis of nanoLC-HCD MS/MS data and added to inclusion lists for LC-ECD or nanoLC-EThcD MS/MS.

View Article and Find Full Text PDF

Negative-ion electron capture dissociation (niECD) is an anion MS/MS technique that provides fragmentation analogous to conventional ECD, including high peptide sequence coverage and retention of labile post-translational modifications (PTMs). niECD has been proposed to be the most efficient for salt-bridged zwitterionic precursor ion structures. Several important PTMs, e.

View Article and Find Full Text PDF

Collagen I, the most abundant protein in humans, is ubiquitous in solid tumors where it provides a rich source of exploitable metabolic fuel for cancer cells. While tumor cells were unable to exploit collagen directly, here we show they can usurp metabolic byproducts of collagen-consuming tumor-associated stroma. Using genetically engineered mouse models, we discovered that solid tumor growth depends upon collagen binding and uptake mediated by the TEM8/ANTXR1 cell surface protein in tumor-associated stroma.

View Article and Find Full Text PDF

A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3-μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI).

View Article and Find Full Text PDF