Objective: The role of Snorc, a novel cartilage specific transmembrane proteoglycan, was studied during skeletal development using two Snorc knockout mouse models. Hypothesizing that Snorc, like the other transmembrane proteoglycans, may be a coreceptor, we also studied its interaction with growth factors.
Methods: Skeletal development was studied in wild type (WT) and Snorc knockout mice during postnatal development by whole mount staining, X-ray imaging, histomorphometry, immunohistochemistry and qRT-PCR.
TLE3 is a transcriptional co-repressor that interacts with several DNA-binding repressors, including downstream effectors of the Notch signaling pathway. We generated Tle3-deficient mice and found that they die in utero and their death is associated with abnormal development of the placenta with major defects in the maternal vasculature. In the normal placenta, maternal blood spaces are lined, not as usual in the mammalian circulation by endothelial cells, but rather by specialized embryo-derived cells of the trophoblast cell lineage named trophoblast giant cells (TGC).
View Article and Find Full Text PDFUcma (Upper zone of growth plate and Cartilage Matrix Associated protein) is a highly conserved tyrosine-sulphated secreted protein of Mw 17 kDa, which is expressed by juvenile chondrocytes. To evaluate the physiological function of this novel cartilage protein, we generated a Ucma-deficient mouse strain by introducing a lacZ/neoR-cassette into the first exon of the Ucma gene. This mutation results in the complete loss of Ucma mRNA and protein expression.
View Article and Find Full Text PDFWnt inhibitory factor 1 (Wif-1) is a secreted antagonist of Wnt signalling. We recently demonstrated that this molecule is expressed predominantly in superficial layers of epiphyseal cartilage but also in bone and tendon. Moreover, we showed that Wif-1 is capable of binding to several cartilage-related Wnt ligands and interferes with Wnt3a-dependent Wnt signalling in chondrogenic cells.
View Article and Find Full Text PDFBackground: The aim of this study was to analyze the expression of hypoxia-inducible factor (HIF)-1α during ischemia and after reperfusion in muscle tissue in the context of microsurgical free muscle tissue transfer.
Methods: Ten patients with soft-tissue defects needing coverage with microsurgical free muscle flaps were included in this study. In all patients, the muscle samples were taken from free myocutaneous flaps.