Peptide-based drugs are powerful inhibitors of therapeutically relevant protein-protein interactions. Their affinity and selectivity for target proteins are commonly assessed using fluorescence-based assays such as anisotropy/polarization or quantitative microarrays. This study reveals that labeling can perturb peptide/protein binding by more than 1 order of magnitude.
View Article and Find Full Text PDFHJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation.
View Article and Find Full Text PDFBackground: The evidence resulting from the analysis of the association between economic fluctuations and their impact on the substance use is mixed and inconclusive. Effects can be pro-cyclical (drug-related harms are predicted to rise when economic conditions improve), counter-cyclical (drug-related harms are predicted to rise in bad economic times) or unrelated to business cycle conditions as different transmission mechanisms could operate simultaneously.
Methods: The main aim of this study is to assess, from a macroeconomic perspective, the impact of economic cycles on illegal drug-related harms in European countries over the 2000-2020 period.
Fluorescence anisotropy (or polarization) is a powerful technique to study biomolecular association processes, by following the rotational motions of one of the two partners in the interaction, labeled with a fluorophore. It can be used to determine dissociation constants in solution, down to nM values, and unlabeled ligands can be characterized, too, by using competition experiments. In this chapter, we introduce the basic principles of the technique, compare it with other experimental approaches, and discuss the experimental details with specific examples regarding SH2 domain/phosphopeptide association processes.
View Article and Find Full Text PDFThe Brugada syndrome (BrS) is a cardiac arrhythmic disorder responsible for sudden cardiac death associated with the onset of ventricular arrhythmias, such as reentrant ventricular tachycardia and fibrillation. The mechanisms which lead to the onset of such electrical disorders in patients affected by BrS are not completely understood, yet. The aim of the present study is to investigate by means of numerical simulations the electrophysiological mechanisms at the basis of the morphology of electrocardiogram (ECG) and the onset of reentry associated with BrS.
View Article and Find Full Text PDF