Publications by authors named "C Stoeckl"

This paper presents a simple physics-based model for the interpretation of key metrics in laser direct drive. The only input parameters required are target scale, in-flight aspect ratio, and beam-to-target radius, and the importance of each has been quantified with a tailored set of cryogenic implosion experiments. These analyses lead to compact and accurate predictions of the fusion yield and areal density as a function of hydrodynamic stability, and they suggest new ways to take advantage of direct drive.

View Article and Find Full Text PDF

A deep-learning convolutional neural network (CNN) is used to infer, from x-ray images along multiple lines of sight, the low-mode shape of the hot-spot emission of deuterium-tritium (DT) laser-direct-drive cryogenic implosions on OMEGA. The motivation of this approach is to develop a physics-informed 3-D reconstruction technique that can be performed within minutes to facilitate the use of the results to inform changes to the initial target and laser conditions for the subsequent implosion. The CNN is trained on a 3D radiation-hydrodynamic simulation database to relate 2D x-ray images to 3D emissivity at stagnation.

View Article and Find Full Text PDF

Neutron time-of-flight (nTOF) spectrometers are essential instruments for measuring and evaluating the performance of inertial confinement fusion implosions. The neutron spectrometers utilized for the OMEGA laser include two liquid-based scintillators, each consisting of a large volume filled with xylene that is coupled to four photomultiplier tubes. Analysis of the signal from these detectors requires detailed knowledge of the scintillator's light output, which is needed to fit the nTOF spectrum, from which the neutron energy spectrum is informed.

View Article and Find Full Text PDF

The next-generation magnetic recoil spectrometer (MRSnext) is being designed to replace the current MRS at the National Ignition Facility and OMEGA for measurements of the neutron spectrum from an inertial confinement fusion implosion. The MRSnext will provide a far-superior performance and faster data turnaround than the current MRS systems, i.e.

View Article and Find Full Text PDF

Shock-driven implosions with 100% deuterium (D_{2}) gas fill compared to implosions with 50:50 nitrogen-deuterium (N_{2}D_{2}) gas fill have been performed at the OMEGA laser facility to test the impact of the added mid-Z fill gas on implosion performance. Ion temperature (T_{ion}) as inferred from the width of measured DD-neutron spectra is seen to be 34%±6% higher for the N_{2}D_{2} implosions than for the D_{2}-only case, while the DD-neutron yield from the D_{2}-only implosion is 7.2±0.

View Article and Find Full Text PDF