Here, we present a covalent nanolayer system that consists of a conductive and biorepulsive base layer topped by a layer carrying biorecognition sites. The layers are built up by electropolymerization of pyrrole derivatives that either carry polyglycerol brushes (for biorepulsivity) or glycoside moieties (as biorecognition sites). The polypyrrole backbone makes the resulting nanolayer systems conductive, opening the opportunity for constructing an electrochemistry-based sensor system.
View Article and Find Full Text PDFBackground: Arthroscopic rotator cuff repair (ARCR) is among the most commonly performed orthopaedic procedures. Several factors-including age, sex, and tear severity-have been identified as predictors for outcome after repair. The influence of the tear etiology on functional and structural outcome remains controversial.
View Article and Find Full Text PDFIntroduction: In the field of arthroscopic rotator cuff repair (ARCR), reporting standards of published studies differ dramatically, notably concerning adverse events (AEs). In addition, prognostic studies are overall methodologically poor, based on small data sets and explore only limited numbers of influencing factors. We aim to develop prognostic models for individual ARCR patients, primarily for the patient-reported assessment of shoulder function (Oxford Shoulder Score (OSS)) and the occurrence of shoulder stiffness 6 months after surgery.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) decorated with photoisomerizable azobenzene glycosides are useful tools for investigating the effect of ligand orientation on carbohydrate recognition. However, photoswitching of SAMs between two specific states is characterized by a limited capacity. The goal of this study is the improvement of photoswitchable azobenzene glyco-SAMs.
View Article and Find Full Text PDFThe synthesis of carbohydrate-functionalized thermosensitive poly(-isopropylacrylamide) microgels and their ability to bind carbohydrate-binding pathogens upon temperature switch are reported. It is found that the microgels' binding affinity is increased above their lower critical solution temperature (LCST), enabling thermo-triggerable capture of pathogens. Here, a series of microgels with comparatively low mannose functionalization degrees below 1 mol % is achieved by a single polymerization step.
View Article and Find Full Text PDF