Publications by authors named "C Slomp"

Article Synopsis
  • * The study examined how backwashing impacts the microbial community and chemical composition in a dual-media filter of anthracite and sand while tracking the removal efficiency of Fe, Mn, and NH over time.
  • * Results showed that backwashing improved Fe removal efficiency and led to a mixed microbial community across the filter layers, with specific microorganisms playing key roles in oxidation and nitrification processes.
View Article and Find Full Text PDF

Rapidly spreading industrialization since the 19th century has led to a drastic increase in trace metal deposition in coastal sediments. Provided that these trace metals have remained relatively immobile after deposition, their sedimentary enrichments can serve as records of local-regional pollution histories. Factors controlling this proxy potential include trace metal geochemistry (carrier-, and host phase affinity), and depositional environmental factors (redox variability, particulate shuttling, organic matter loading, bathymetry).

View Article and Find Full Text PDF

Coastal zones account for 75% of marine methane emissions, despite covering only 15% of the ocean surface area. In these ecosystems, the tight balance between methane production and oxidation in sediments prevents most methane from escaping into seawater. However, anthropogenic activities could disrupt this balance, leading to an increased methane escape from coastal sediments.

View Article and Find Full Text PDF

Coastal environments are a major source of marine methane in the atmosphere. Eutrophication and deoxygenation have the potential to amplify the coastal methane emissions. Here, we investigate methane dynamics in the eutrophic Stockholm Archipelago.

View Article and Find Full Text PDF

Although marine environments represent huge reservoirs of the potent greenhouse gas methane, they currently contribute little to global net methane emissions. Most of the methane is oxidized by methanotrophs, minimizing escape to the atmosphere. Aerobic methanotrophs oxidize methane mostly via the copper (Cu)-bearing enzyme particulate methane monooxygenase (pMMO).

View Article and Find Full Text PDF