Antimicrob Agents Chemother
October 2002
Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus.
View Article and Find Full Text PDFPotent nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase have been derived from a file compound high throughput screening hit. Optimized compounds show excellent antibacterial activity against staphylococcal and enterococcal pathogens, including strains resistant to clinical antibiotics. Compound 11 demonstrated in vivo efficacy in an S.
View Article and Find Full Text PDFAn SAR study of a screening lead has led to the identification of 2,9-disubstituted 1,2,3,4-tetrahydropyrido[3,4-b]indoles as inhibitors of Staphylococcus aureus enoyl acyl carrier protein reductase (FabI).
View Article and Find Full Text PDF1,4-Disubstituted imidazole inhibitors of Staphylococcus aureus and Escherichia coli enoyl acyl carrier protein reductase (FabI) have been identified. Crystal structure data shows the inhibitor 1 bound in the enzyme active site of E. coli FabI.
View Article and Find Full Text PDFTriclosan, a widely used antibacterial agent, possesses potent activity against Staphylococcus aureus. This study reports on an investigation of the antibacterial target of triclosan in this pathogen. A strain of S.
View Article and Find Full Text PDF