Broadband quantum light is a vital resource for quantum metrology and spectroscopy applications such as quantum optical coherence tomography or entangled two photon absorption. For entangled two photon absorption in particular, very high photon flux combined with high time-frequency entanglement is crucial for observing a signal. So far these conditions could be met by using high power lasers driving degenerate, type 0 bulk-crystal spontaneous parametric down conversion (SPDC) sources.
View Article and Find Full Text PDFSamples of dielectric optical waveguides of rib or strip type in thin-film lithium niobate (TFLN) technology are characterized with respect to their optical loss using the Fabry-Pérot method. Attributing the losses mainly to sidewall roughness, we employ a simple perturbational procedure, based on rigorously computed mode profiles of idealized channels, to estimate the attenuation for waveguides with different cross sections. A single fit parameter suffices for an adequate modelling of the effect of the waveguide geometry on the loss levels.
View Article and Find Full Text PDFIdentifying a reasonably small Hilbert space that completely describes an unknown quantum state is crucial for efficient quantum information processing. We introduce a general dimension-certification protocol for both discrete and continuous variables that is fully evidence based, relying solely on the experimental data collected and no other unjustified assumptions whatsoever. Using the Bayesian concept of relative belief, we take the effective dimension of the state as the smallest one such that the posterior probability is larger than the prior, as dictated by the data.
View Article and Find Full Text PDFDistributed quantum information in networks is paramount for global secure quantum communication. Moreover, it finds applications as a resource for relevant tasks, such as clock synchronization, magnetic field sensing, and blind quantum computation. For quantum network analysis and benchmarking of implementations, however, it is crucial to characterize the topology of networks in a way that reveals the nodes between which entanglement can be reliably distributed.
View Article and Find Full Text PDFFrequency conversion based on χ nonlinear optical interactions can be made very efficient in waveguide structures. Fabrication imperfections remain very often a limiting factor. They can induce strong distortions in the spectral shape and lower the efficiency.
View Article and Find Full Text PDF