Publications by authors named "C Sidler"

Prognosis for -ITD positive acute myeloid leukemia with high allelic ratio (>0.5) is poor, particularly in relapse, refractory to or unfit for intensive treatment, thus highlighting an unmet need for novel therapeutic approaches. The combined use of compounds targeting both the mutated FLT3 receptor and cellular p53 inhibitors might be a promising treatment option for this poor risk leukemia subset.

View Article and Find Full Text PDF

The tumor suppressor protein p53 is inactivated in a large variety of cancer cells. Cellular p53 inhibitors like the mouse double minute 2 homolog (MDM2) commonly suppress the p53 function in acute myeloid leukemia (AML). Moreover, fms like tyrosine kinase 3 (FLT3) growth factor signaling pathways including the mitogen-activated kinase (MAPK) cascade (RAS-RAF-MEK-ERK) are highly active in AML cells.

View Article and Find Full Text PDF

Aging is characterized by functional decline of diverse organs and an increased risk for several diseases. Therefore, a high interest exists in understanding the molecular mechanisms that stimulate aging at all levels, from cells and tissues to organs and organisms, in order to develop ways to promote healthy aging. While many molecular and biochemical mechanisms are already understood in some detail, the role of changes in epigenetic regulation has only begun to be considered in recent years.

View Article and Find Full Text PDF

The binding of sequence-specific RNA-interacting proteins, such as the bacteriophage MS2 or PP7 coat proteins, to their corresponding target sequences has been extremely useful and widely used to visualize single mRNAs in vivo. However, introduction of MS2 stem-loops into yeast mRNAs has recently been shown to lead to the accumulation of RNA fragments, suggesting that the loops impair mRNA decay. This result was questioned, because fragment occurrence was mainly assessed using ensemble methods, and their cellular localization and its implications had not been addressed on a single transcript level.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide, and it has been linked to radiation exposure. As a well-defined oncogene, wild-type p53-induced phosphatase 1 (WIP1) plays an inhibitory role in several tumor suppressor pathways, including p53. WIP1 is amplified and overexpressed in many malignancies, including HCC.

View Article and Find Full Text PDF