Biochem Biophys Res Commun
February 2025
The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time.
View Article and Find Full Text PDFHeat treatment serves as a viable strategy to effectively mitigate the intense corrosion of biodegradable WE43 alloys. However, limited comprehension of the passivation mechanisms underlying heat treatment and the dilemma to quantitatively examine the evolution of hydrogen gas in vivo introduce uncertainties in designing heat treatments for developing clinically applicable WE43. This work aims to advance this knowledge by applying cutting-edge atom probe tomography to provide atomic-scale insights into the passivation roles of rare earth (RE)-rich β (Mg(Y, Nd)) and β' (MgNdY) nanophases induced by T6 heat treatment at 250 °C, and employing machine learning-based image analysis techniques to quantitatively unveil WE43's in vivo gas evolution during a 12-week implantation.
View Article and Find Full Text PDFLung cancer remains the leading cause of cancer death in the United States, underscoring the critical need to optimize treatment strategies. Compared to conventional treatments such as surgical resection, radiotherapy, chemotherapy, and immunotherapy, targeted therapy stands out for its higher selectivity and minimal adverse effects. Among these, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the most widely used in targeted therapy for non-small-cell lung cancer (NSCLC).
View Article and Find Full Text PDF