Publications by authors named "C Seshadhri"

Graph representation learning is a fundamental technique for machine learning (ML) on complex networks. Given an input network, these methods represent the vertices by low-dimensional real-valued vectors. These vectors can be used for a multitude of downstream ML tasks.

View Article and Find Full Text PDF

The study of complex networks is a significant development in modern science, and has enriched the social sciences, biology, physics, and computer science. Models and algorithms for such networks are pervasive in our society, and impact human behavior via social networks, search engines, and recommender systems, to name a few. A widely used algorithmic technique for modeling such complex networks is to construct a low-dimensional Euclidean embedding of the vertices of the network, where proximity of vertices is interpreted as the likelihood of an edge.

View Article and Find Full Text PDF

We present a characterization of short-term stability of Kauffman's NK (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs.

View Article and Find Full Text PDF

Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdős-Rényi (ER) subgraph.

View Article and Find Full Text PDF