Objectives: Despite a lack of evidence demonstrating superiority to non-steroidal anti-inflammatory drugs, like ketorolac, that are associated with lower risk of harms, opioids remain the most prescribed analgesic for acute abdominal pain. In this pilot trial, we will assess the feasibility of a definitive trial comparing ketorolac with morphine in children with suspected appendicitis. We hypothesise that our study will be feasible based on a 40% consent rate.
View Article and Find Full Text PDFWe report K(alpha) x-ray production with a high energy (110 mJ per pulse at 800 nm before compression/15 mJ at 400 nm after compression), high repetition rate (100 Hz), and high pulse contrast (better than 10(-9) at 400 nm) laser system. To develop laser-based x-ray sources for biomedical imaging requires to use high-energy and high-power ultra-fast laser system where compression is achieved under vacuum. Using this type of laser system, we demonstrate long-term stability of the x-ray yield, conversion efficiency higher than 1.
View Article and Find Full Text PDFK-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum pulse energy of 110 mJ before compression.
View Article and Find Full Text PDFWe report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach.
View Article and Find Full Text PDFWe successfully implemented laser beam wavefront correction on the 200 TW laser system at the Advanced Laser Light Source. Ultra high intensities in excess of 10(20) W/cm(2) have been demonstrated. This system is, to our knowledge, the first 100 TW class laser to combine simultaneously ultra high intensity, 10(9) laser pulse contrast ratio and 10 Hz high repetition rate.
View Article and Find Full Text PDF