A massive interest has been generated lately by the improvement of solid-state magic-angle spinning (MAS) NMR methods for the study of a broad range of paramagnetic organic and inorganic materials. The open-shell cations at the origin of this paramagnetism can be metals, transition metals, or rare-earth elements. Actinide-bearing compounds and their 5f unpaired electrons remain elusive in this intensive research area due to their well-known high radiotoxicity.
View Article and Find Full Text PDFA concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system.
View Article and Find Full Text PDF