Publications by authors named "C Seidman"

Hypertrophic cardiomyopathy (HCM) caused by autosomal-dominant mutations in genes coding for structural sarcomeric proteins, is the most common inherited heart disease. HCM is associated with myocardial hypertrophy, fibrosis and ventricular dysfunction. Hypoxia-inducible transcription factor-1α (Hif-1α) is the central master regulators of cellular hypoxia response and associated with HCM.

View Article and Find Full Text PDF

Loss of Bcl2-associated athanogene 3 (BAG3) is associated with dilated cardiomyopathy (DCM). BAG3 regulates sarcomere protein turnover in cardiomyocytes; however, the function of BAG3 in other cardiac cell types is understudied. In this study, we used an isogenic pair of BAG3-knockout and wild-type human induced pluripotent stem cells (hiPSCs) to interrogate the role of BAG3 in hiPSC-derived cardiac fibroblasts (CFs).

View Article and Find Full Text PDF

Heterozygous truncating variants in the sarcomere protein titin (TTN) are the most common genetic cause of heart failure. To understand mechanisms that regulate abundant cardiomyocyte TTN expression we characterized highly conserved intron 1 sequences that exhibited dynamic changes in chromatin accessibility during differentiation of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CMs). Homozygous deletion of these sequences in mice caused embryonic lethality while heterozygous mice demonstrated allele-specific reduction in Ttn expression.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on Facioscapulohumeral dystrophy type 1 (FSHD1), a serious muscle disorder, and emphasizes the need for a comprehensive approach to understand its genetics.
  • - Researchers conducted genome sequencing and linkage analysis in a family suspected of having FSHD1, identifying a specific disease locus on chromosome 4q35.2.
  • - By using advanced ultra-long-read genome sequencing, they successfully genotyped a pathogenic allele associated with FSHD1, highlighting the effectiveness of these genomic tools in disease mapping and characterization.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates laterality defects, focusing on the genetic variations linked to congenital heart disease (CHD) by analyzing sequencing data from three cohorts, uncovering a higher occurrence of digenic variants compared to control groups.
  • - A digenic model involving 115 known laterality defect genes revealed significant rates of trans-heterozygous digenic variants in affected individuals, particularly in the Baylor, Kids First, and PCGC cohorts (ranging from 2.8% to 13.5%).
  • - The results suggest that epistatic interactions between genes play a crucial role in the genetics of laterality defects, with 23% of identified digenic pairs found in structural complexes of motile
View Article and Find Full Text PDF