Publications by authors named "C Scopa"

Facial communication regulates many aspects of social life in human and nonhuman primates. Empirically identifying distinct facial expressions and their underlying functions can help illuminate the evolution of species' communicative complexity. We focused on bared-teeth faces (BTFs), a highly versatile facial expression in the tolerant macaque Macaca tonkeana.

View Article and Find Full Text PDF

This research investigates the human-horse bond, aiming to unveil the physiological mechanisms regulating interspecies interactions. We hypothesized observing a physiological synchronization in human-horse dynamics, akin to human interactions. Through time-frequency Granger causality analysis of heart rate variability (HRV) and behavioral data, this study reveals the establishment of bidirectional synchronization in HRV between humans and horses.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the role of the BAF chromatin remodeler, specifically the ARID1A subunit, in cranial neural crest cell (CNCC) specification and its link to Coffin-Siris syndrome (CSS).
  • ARID1A haploinsufficiency disrupts the epithelial-to-mesenchymal transition (EMT) vital for CNCC migration, while ARID1A-BAF regulates enhancers connected to EMT genes, demonstrating that ZIC2 binding at these enhancers relies on ARID1A.
  • The research establishes an important connection between ARID1A and ZIC2 in promoting EMT and successful CNCC delamination, suggesting implications for understanding congenital disorders like CSS.
View Article and Find Full Text PDF

Adult neurogenic decline, inflammation, and neurodegeneration are phenotypic hallmarks of Alzheimer's disease (AD). Mobilization of transposable elements (TEs) in heterochromatic regions was recently reported in AD, but the underlying mechanisms are still underappreciated. Combining functional genomics with the differentiation of familial and sporadic AD patient derived-iPSCs into hippocampal progenitors, CA3 neurons, and cerebral organoids, we found that the upregulation of the AP-1 subunit, c-Jun, triggers decondensation of genomic regions containing TEs.

View Article and Find Full Text PDF