Publications by authors named "C Scolastico"

Novel pro-apoptotic, homodimeric and heterodimeric Smac mimetics/IAPs inhibitors connected through head-head (8), tail-tail (9) or head-tail linkers (10), were biologically and structurally characterized. In vitro characterization (binding to BIR3 and linker-BIR2-BIR3 domains from XIAP and cIAP1, cytotoxicity assays) identified early leads from each dimer family. Computational models and structural studies (crystallography, NMR, gel filtration) partially rationalized the observed properties for each dimer class.

View Article and Find Full Text PDF

Novel pro-apoptotic, homo- and heterodimeric Smac mimetics/IAPs inhibitors based on the N-AVPI-like 4-substituted 1-aza-2-oxobicyclo[5.3.0]decane scaffold were prepared from monomeric structures connected through a head-head (8), tail-tail (9) or head-tail (10) linker.

View Article and Find Full Text PDF

The efficacy of taxane-based antitumor therapy is limited by several drawbacks which result in a poor therapeutic index. Thus, the development of approaches that favor selective delivery of taxane drugs (e.g.

View Article and Find Full Text PDF

We report the synthesis of novel chelates of Gd and (68)Ga with DPTA, DOTA, HP-DOA3, as well as with AAZTA, a novel chelating agent developed by our research group. These chelating agents were appropriately conjugated, prior to metal complexation, with DB58, an RGD peptidomimetic, conformationally constrained on an azabicycloalkane scaffold and endowed with high affinity for integrin α(ν)β(3) . Because α(ν)β(3) is involved in neo-angiogenesis in solid tumors and is also directly expressed in cancer cells (e.

View Article and Find Full Text PDF

Integrin α(v)β(3) is an adhesion molecule involved in physiological and pathological angiogenesis as well as tumor invasion and metastasis. Therefore, it is considered an important target for molecular imaging and delivery of therapeutics for cancer, and there is a strong interest in developing novel agents interacting with this protein. Nevertheless, the interaction of individual ligands is often still weak for efficient tumor targeting, and many research groups have synthesized multivalent displays in order to overcome this problem.

View Article and Find Full Text PDF