Publications by authors named "C Schrooten"

The difficulty in finding causative mutations has hampered their use in genomic prediction. Here, we present a methodology to fine-map potentially causal variants genome-wide by integrating the functional, evolutionary and pleiotropic information of variants using GWAS, variant clustering and Bayesian mixture models. Our analysis of 17 million sequence variants in 44,000+ Australian dairy cattle for 34 traits suggests, on average, one pleiotropic QTL existing in each 50 kb chromosome-segment.

View Article and Find Full Text PDF

This study assessed the accuracy and bias of genomic prediction (GP) in purebred Holstein (H) and Jersey (J) as well as crossbred (H and J) validation cows using different reference sets and prediction strategies. The reference sets were made up of different combinations of 36,695 H and J purebreds and crossbreds. Additionally, the effect of using different sets of marker genotypes on GP was studied (conventional panel: 50k, custom panel enriched with, or close to, causal mutations: XT_50k, and conventional high-density with a limited custom set: pruned HDnGBS).

View Article and Find Full Text PDF

Genome-Wide Association Studies (GWAS) in large human cohorts have identified thousands of loci associated with complex traits and diseases. For identifying the genes and gene-associated variants that underlie complex traits in livestock, especially where sample sizes are limiting, it may help to integrate the results of GWAS for equivalent traits in humans as prior information. In this study, we sought to investigate the usefulness of results from a GWAS on human height as prior information for identifying the genes and gene-associated variants that affect stature in cattle, using GWAS summary data on samples sizes of 700,000 and 58,265 for humans and cattle, respectively.

View Article and Find Full Text PDF

Background: Sequence-based genome-wide association studies (GWAS) provide high statistical power to identify candidate causal mutations when a large number of individuals with both sequence variant genotypes and phenotypes is available. A meta-analysis combines summary statistics from multiple GWAS and increases the power to detect trait-associated variants without requiring access to data at the individual level of the GWAS mapping cohorts. Because linkage disequilibrium between adjacent markers is conserved only over short distances across breeds, a multi-breed meta-analysis can improve mapping precision.

View Article and Find Full Text PDF

Background: A multi-population genomic prediction (GP) model in which important pre-selected single nucleotide polymorphisms (SNPs) are differentially weighted (MPMG) has been shown to result in better prediction accuracy than a multi-population, single genomic relationship matrix ([Formula: see text]) GP model (MPSG) in which all SNPs are weighted equally. Our objective was to underpin theoretically the advantages and limits of the MPMG model over the MPSG model, by deriving and validating a deterministic prediction equation for its accuracy.

Methods: Using selection index theory, we derived an equation to predict the accuracy of estimated total genomic values of selection candidates from population [Formula: see text] ([Formula: see text]), when individuals from two populations, [Formula: see text] and [Formula: see text], are combined in the training population and two [Formula: see text], made respectively from pre-selected and remaining SNPs, are fitted simultaneously in MPMG.

View Article and Find Full Text PDF