The citric acid or tricarboxylic acid cycle is a central element of higher-plant carbon metabolism which provides, among other things, electrons for oxidative phosphorylation in the inner mitochondrial membrane, intermediates for amino-acid biosynthesis, and oxaloacetate for gluconeogenesis from succinate derived from fatty acids via the glyoxylate cycle in glyoxysomes. The tricarboxylic acid cycle is a typical mitochondrial pathway and is widespread among alpha-proteobacteria, the group of eubacteria as defined under rRNA systematics from which mitochondria arose. Most of the enzymes of the tricarboxylic acid cycle are encoded in the nucleus in higher eukaryotes, and several have been previously shown to branch with their homologues from alpha-proteobacteria, indicating that the eukaryotic nuclear genes were acquired from the mitochondrial genome during the course of evolution.
View Article and Find Full Text PDFThe influence of starvation on malate dehydrogenase (MDH) in rat liver was investigated. Native electrophoresis revealed two MDH isoforms in non-starved rats and three isoenzymes in starved rats. After sucrose density gradient centrifugation of cell organelles from liver, MDH activity was detected in the mitochondrial and cytosolic fractions from non-starved rats.
View Article and Find Full Text PDFPrevious attempts to purify chloroplast 6-phosphogluconate dehydrogenase (cp6PGDH), a key enzyme of the oxidative pentose phosphate pathway, have been unsuccessful due to rapid activity loss. An efficient purification protocol was developed and the enzyme from spinach leaves was purified 1000-fold to apparent homogeneity with a specific activity of 60 U.mg-1.
View Article and Find Full Text PDFClass I and class II aldolases are products of two evolutionary non-related gene families. The cytosol and chloroplast enzymes of higher plants are of the class I type, the latter being bifunctional for fructose-1,6- and sedoheptulose-1,7-P2 in the Calvin cycle. Recently, class II aldolases were detected for the cytosol and chloroplasts of the lower alga Cyanophora paradoxa.
View Article and Find Full Text PDFTwo fructose-1,6-bisphosphate aldolases from the acido- and thermophilic red alga Galdieria sulphuraria were purified to apparent homogeneity and N-terminally microsequenced. Both aldolases had similar biochemical properties such as Km (FBP) (5.6-5.
View Article and Find Full Text PDF