Inspired by the properties of natural protein-based biomaterials, protein nanomaterials are increasingly designed with natural or engineered peptides or with protein building blocks. Few examples describe the design of functional protein-based materials for biotechnological applications that can be readily manufactured, are amenable to functionalization, and exhibit robust assembly properties for macroscale material formation. Here, we designed a protein-scaffolding system that self-assembles into robust, macroscale materials suitable for in vitro cell-free applications.
View Article and Find Full Text PDFEngineered living materials (ELMs) are a fast-growing area of research that combine approaches in synthetic biology and material science. Here, we engineer B. subtilis to become a living component of a silica material composed of self-assembling protein scaffolds for functionalization and cross-linking of cells.
View Article and Find Full Text PDFWe herein describe a bioinspired solid-phase assembly of a multienzyme system scaffolded on an artificial cellulosome. An alcohol dehydrogenase and an ω-transaminase were fused to cohesin and dockerin domains to drive their sequential and ordered coimmobilization on agarose porous microbeads. The resulting immobilized scaffolded enzymatic cellulosome was characterized through quartz crystal microbalance with dissipation and confocal laser scanning microscopy to demonstrate that both enzymes interact with each other and physically colocalize within the microbeads.
View Article and Find Full Text PDFCurr Microbiol
August 2021
Two decades of structural and functional studies have revealed functions, structures and diversity of bacterial microcompartments. The protein-based organelles encapsulate diverse metabolic pathways in semipermeable, icosahedral or pseudo-icosahedral shells. One of the first discovered and characterized microcompartments are those involved in ethanolamine degradation.
View Article and Find Full Text PDF