Publications by authors named "C Samanta"

Crystalline beta zeolite molecular sieve with SiO/AlO molar ratio of 28.5 was synthesized by the hydrothermal crystallization method and examined for methanol dehydration reaction. The micro-mesoporous beta zeolite was active between 280 and 450°C.

View Article and Find Full Text PDF

Addressable quantum states well isolated from the environment are of considerable interest for quantum information science and technology. Carbon nanotubes are an appealing system, since a perfect crystal can be grown without any missing atoms and its cylindrical structure prevents ill-defined atomic arrangement at the surface. Here, we develop a reliable process to fabricate compact multielectrode circuits that can sustain the harsh conditions of the nanotube growth.

View Article and Find Full Text PDF

Stable catalyst development for CO hydrogenation to methanol is a challenge in catalysis. In this study, indium (In)-promoted Cu nanoparticles supported on nanocrystalline CeO catalysts were prepared and explored for methanol production from CO. In-promoted Cu catalysts with ∼1 wt % In loading showed a methanol production rate of 0.

View Article and Find Full Text PDF

Development of a chromium (Cr)-free hydrogenation catalyst is very important to replace the existing hazardous Cr based catalyst used in the furfural hydrogenation to furfuryl alcohol. Herein, we report synthesis of well-dispersed copper nanoparticles supported on hydrothermally stable magnesium doped alumina (Cu@Mg/γ-AlO) for selective hydrogenation of furfural to furfuryl alcohol. The prepared catalyst was characterized by X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (PXRD), Surface Area Analysis (SAA), High Resolution-Transmission Electron Microscopy (HR-TEM), Temperature Programmed Reduction/Desorption (TPR/TPD) and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) to understand textural properties of the catalyst.

View Article and Find Full Text PDF

We demonstrate all electrical measurements on NEMS devices fabricated using CVD grown monolayer MoS2. The as-grown monolayer film of MoS2 on top of the SiO2/Si wafer is processed to fabricate arrays and individual NEMS devices without the complex pick and transfer techniques associated with graphene. The electromechanical properties of the devices are on par with those fabricated using the exfoliation method.

View Article and Find Full Text PDF